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Abstract. We study the double parton interaction process in collisions between highly virtual qq̄ pairs in
the BFKL regime. Explicit expressions for the double parton distributions are obtained both in the case
of direct coupling of the BFKL pomerons to the qq̄ pair and in the case of triple pomeron interaction.

1 Introduction

An important feature of hadronic collisions at high ener-
gies is the growth of the hard component of the interac-
tion, induced by the increasing flux of partons. Apart from
the single hard interaction, multi-parton hard interactions
begin to play an increasing role. Hard events with multi-
parton interactions have in fact been predicted long ago
by several authors [1]. The simplest event of this kind, the
double parton scattering, has been an object of experimen-
tal search in all high energy hadron collider experiments
since several years [2] and while initially the results have
been sparse and not very consistent, recently CDF has re-
ported the observation of a large number of events with
double parton collisions [3].

Multiple parton collisions represent a new observable
feature of hadronic interactions. Non-perturbative inputs
to the corresponding cross sections are the multi-parton
distributions. These are new properties of the hadron
structure which become accessible through the observa-
tion of multiple parton collisions. The multiple parton
distributions are related directly to the many-body par-
ton correlations in the hadron [4]. While, as a general rule,
the non-perturbative inputs are quantities to be measured
and cannot be computed in perturbation theory, in the in-
teraction of two very virtual qq̄ pairs, the whole process
falls in the domain of perturbative QCD and, in that case,
multiple parton distributions can be obtained through a
direct calculation, within an approximation scheme. The
aim of the present paper is to study precisely this example
of high energy interaction and to work out explicitly the
simplest case of multi-parton distribution.

Note that studying events with several hard interac-
tions one can introduce the standard notions of inclusive
and exclusive cross sections. The first refer to the obser-
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vation of at least one (or two, · · ·) hard events, the sec-
ond of exactly one (or two, · · ·) hard events. The inclusive
hard cross sections are most easily accessable in the exper-
imental study. They are also most easily calculated theo-
retically. In fact the inclusive cross sections are basically
average quantities, since they include the multiplicity fac-
tor, which is proportional to the number of hard partonic
interactions [5], so it is no wonder that the inclusive cross
section may become larger than the total cross section [6].
The AGK rules [7] tell that the inclusive cross sections
for single, double, triple etc. hard collisions are given by
the simplest relevant diagrams, which involve one, two,
three etc. hard interaction blobs. All other contributions
from diagrams with more hard blobs cancel in the inclusive
cross sections. In the following, applying the simple the-
oretical formulas for the inclusive cross sections, we shall
use them as basic quantities, from which we shall extract
the multi-parton distributions.

The paper consists of two parts. For the sake of com-
pleteness the kinematics of the single and double par-
ton collision and the factorization of the non-perturbative
parts of the processes are re-derived in the first part of the
paper. In the second part, using the perturbative QCD ap-
proach, we compute the double parton distribution in two
different limiting cases. The last section is devoted to the
conclusions.

2 Single and double parton interactions

2.1 Single hard scattering

To fix our notation and to settle a common ground with
the double parton collision process, we discuss first the
single hard scattering case which is described by the di-
agram shown in Fig. 1. The hard scattering correspond-
ing to the central blob a is supposed to be characterized
by a large scale M related to the concrete nature of the
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Fig. 1. Single scattering term

hard process. For processes like charm production M is
obviously of the order of the mass of the charmed meson.
For processes characterized by large transverse momenta
of the produced particles (jet production) the scale M is
determined by the minimal transverse momentum kmin
ascribed to a hard jet. The discontinuity of the diagram
through the hard blob represents the inclusive cross sec-
tion and, because of the AGK cancellation [7], it includes
the factor accounting for the multiplicity of the hard par-
tonic collisions in the hadronic interaction [5]. In the fol-
lowing one considers only one sort of partons which, for
the hard pomeron model, is represented by the gluons. The
contribution of the diagram to the inclusive cross section
is related to the amplitude by

σ = (1/s)ImA, (1)

where s = 2p+q− is the c.m. energy squared. We neglect
the masses of the projectile and target and take p− =
q+ = p⊥ = q⊥ = 0. For massive projectile and target
the standard substitution p → p − αq, q → q − αp with
α = m2/s is assumed. The usual scaling variables of the
colliding partons are introduced by

k+ = xp+, l− = wq−. (2)

The partonic c.m. energy squared is therefore written as
sp ≡ M2 = (k + l)2 � 2k+l− = sxw.

The standard treatment is based on two assumptions
which are the basis for the factorization hypothesis.
(1) Parton virtualities (essentially the transverse momenta
squared) are much smaller as compared with M2.
(2) The dependence of the hard amplitude a on the virtu-
alities of the external lines can be neglected.

The longitudinal integrations in the diagram of Fig. 1
are easily done. Indeed, according to our assumptions the
amplitude a does not depend on k−, nor on l+. Only the
upper part of the diagram depends therefore on k−. One
denotes it (with parton legs) as F1(p, k). Its integration
over k− is standardly transformed into an integration over
the “missing mass” s1 = (p− k)2 of its right-hand discon-
tinuity: ∫

dk−
2π

F1(p, k) =
i

2p+

∫ ∞
s10

ds1
π

ImF1(p, k)

≡ 2πi
xp+

F1(x, k⊥). (3)

Fig. 2. Soft blob in the single scattering term

Similarly for the target∫
dl+
2π

F2(q, l) =
i

2q−

∫ ∞
s20

ds2
π

ImF2(q, l)

≡ 2πi
wq−

F2(w, l⊥). (4)

The standard parton distributions at the scale M2 are
obtained by integrating F1 and F2 over the transverse mo-
menta k⊥ and l⊥:

ρ1(x,M2) =
∫

d2k

(2π)2
θ(M2 − k2)F1(x, k). (5)

The final integrations over k+ and l− can be transformed
into integrations over x and w. The integration limits,
[0, 1], are a consequence of the positivity constraints of
s1, s2 andM2. The amplitude of Fig. 1 is therefore written
as

A1 =
∫ 1

0

dxdw
xw

ρ1(x,M2)ρ2(w,M2)a(M2), (6)

while the single parton scattering inclusive cross sections
is expressed by the usual factorized formula:

σ1 =
∫ 1

0
dxdwρ1(x,M2)ρ2(w,M2)σp(xw). (7)

The cross section can be expressed by using the uninte-
grated parton distributions in coordinate space. To this
end one introduces the (non-forward) target parton dis-
tribution F1(x, k1⊥, k2⊥), shown in Fig. 2, and its Fourier
transform

F1(x, r1, r2) =
∫

d2k1d2k2

(2π)4
F1(x, k1, k2)eik1r1−ik2r2 . (8)

(In the following part of this subsection one will not find
4-vectors, so we suppress the subindex ⊥ for the k’s.) It
is convenient to introduce the partonic c.m. and relative
coordinates by

r1 + r2 = 2R, r1 − r2 = r. (9)

One has therefore

F1(x, k1, k2)

=
∫

d2Rd2rF1(x,R, r)e−iR(k1−k2)−ir(k1+k2)/2, (10)

and when k1 and k2 are equal

F1(x, k) = F1(x, k, k) =
∫

d2Rd2rF1(x,R, r)e−irk, (11)
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Fig. 3. Double scattering term

which is precisely the unintegrated parton distribution
which appeared in the single hard scattering expression
above. According to (5) one has to integrate F1 over all
k values, with the condition k2 � M2, in order to obtain
the final partonic distribution at the scaleM2. In the scal-
ing approximation the ρ’s do not depend onM2. One may
therefore take the limit M2 → ∞ and thus integrate over
all k values. In the scaling approximation one therefore
finds

ρ1(x,M2 → ∞) =
∫

d2RF1(x,R, 0). (12)

When keeping into account the limits for k2 the value
r = 0 is changed into r2 � 1/M2. The standard par-
ton distributions ρ(x,M2), entering in the factorization
formula, can therefore be expressed via the density in co-
ordinate space F as

ρ(x,M2) =
∫

d2RF (x,R, r), r2 = 1/M2. (13)

2.2 Double hard scattering

The double hard scattering diagram is shown in Fig. 3.
The corresponding inclusive cross section (including the
multiplicity factor) is obtained, by means of the AGK rules
[7], by taking twice the imaginary part and dividing it by
−s.

The previous analysis can be repeated also in this case.
There are five double longitudinal integrations. As inde-
pendent variables one chooses k1, k2, l1, l2 and q = k1−k3.
The two hard scattering amplitudes are assumed to de-
pend only on their total c.m. energies squared, M2

1 =
(k1 + l1)2 = 2k1+l1− and M2

2 = (k2 + l2)2 = 2k2+l2−, not
on k1(2)−, l1(2)+, nor on q±. The integrations on k1(2)− are
made as in the single scattering case. One calls the projec-
tile blob (with all four partonic legs) F1(p, k1, k2, k3, k4)
(
∑
ki = 0). Then the integrations over k1(2)− can be

transformed into integrations over the missing masses of
the two hard scatterings s1 = (p−k1)2 and s2 = (p−k2)2,
the integrand being the discontinuity of F on the corre-
sponding right-hand cuts.

Since neither the hard scattering amplitudes nor F2
depend on q− one may integrate F1 also over q−. This last
integration can be transformed into an integration over the
missing mass in between the scatterings s3 = (p−q)2 along

the right-hand cut, the integrand being the corresponding
discontinuity. As a result one obtains(

i
2p+

)3 ∫ ∞
s10

ds1
2πi

∫ ∞
s20

ds2
2πi

∫ ∞
s30

ds3
2πi

×Discs1Discs2Discs3F1(p, k1, k2, k3, k4)

≡ −2π2i
(

1
p+

)3

F1(x1, k1⊥, k3⊥ | x2, k4,⊥, k2⊥). (14)

The density defined on the right-hand side is the general-
ization of the single to the double unintegrated partonic
density. The double parton distribution of the target is
introduced in an analogous way. The integrations over
k1(2)+, l1(2)− are transformed into integrations on the scal-
ing variables x1,2 and w1,2 and the double hard scattering
amplitude of Fig. 3 is expressed as

A2 =
i
2s

∫ 1

0

dx1

x1

dx2

x2

dw1

w1

dw2

w2

∫ 4∏
j=1

d2kj

(2π)2
d2lj
(2π)2

(2π)2

δ2(k1 − k2 − k3 + k4)
×(2π)2δ2(k1 + l1 − k3 − l3)
×(2π)2δ2(k2 + l2 − k4 − l4)

F1(x1, k1, k3 | x2, k4, k2)F2(x2, l1, l3 | x2, l4, l2)
×a(M2

1 )a(M
2
2 ), (15)

where M2
1 = sx1w1 and M2

2 = sx2w2. The double hard
scattering cross section is therefore written as

σ2 =
∫ 1

0
dx1dx2dw1dw2

∫ 4∏
j=1

d2kj

(2π)2
d2lj
(2π)2

(2π)2δ2(k1 − k2 − k3 + k4)
×(2π)2δ2(k1 + l1 − k3 − l3)
×(2π)2δ2(k2 + l2 − k4 − l4)

F1(x1, k1, k3 | x2, k4, k2)F2(w1, l1, l3 | w2, l4, l2)
×σp(x1w1)σp(x2w2), (16)

and both in (15) and in (16) the integrations are done
with the limits k2

1, k
2
3 < M2

1 and k2
2, k

2
4 < M2

2 .
The integrations over the transverse components of the

transferred momenta are more conveniently performed by
going to coordinates space. One introduces therefore

F1(x1, r1, r3 | x2, r4, r2)

=
∫ 4∏

j=1

dkj

(2π)2
× F1(x1, k1, k3 | x2, k4, k2)

×e(ik1r1−ik2r2−ik3r3+ik4r4), (17)

where in the integrand all four momenta are independent,
in such a way that one is integrating also over the total
momentum transferred to the projectile. One introduces
the c.m. and relative coordinates defined by

r1 + r3 = 2R1, r1 − r3 = r13, r4 + r2 = 2R2,

r2 − r4 = r24, (18)
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so that

r1 = R1 + r13/2, r3 = R1 − r13/2, r2 = R2 + r24/2,
r4 = R2 − r24/2.

Similar coordinates, with primes, are introduced for the
target:

l1 + l3 = 2R′1 etc.

Going to the coordinates space one finds, in (16), the fol-
lowing exponential:

exp{−iR1(k1 − k3) − ir13(k1 + k3)/2
+iR2(k2 − k4) + ir24(k2 + k4)/2
−iR′1(l1 − l3) − ir′13(l1 + l3)/2
+iR′2(l2 − l4) + ir′24(l2 + l4)/2}.

Also the three δ functions in (16) can be represented as
integrals over three additional coordinates in transverse
space:

(2π)2δ2(k1 − k2 − k3 + k4) =
∫

d2ReiR(k1−k2−k3+k4),

(2π)2δ2(k1 + l1 − k3 − l3) =
∫

d2b1eib1(k1+l1−k3−l3),

(2π)2δ2(k4 + l4 − k2 − l2) =
∫

d2b2eib2(k4+l4−k2−l2).

In the scaling limit the integrations over the eight mo-
menta kj , lj , j = 1, · · · , 4 produce eight δ functions:

δ2(R+ b1 −R1 − r13), δ2(−R− b2 +R2 + r24),
δ2(−R− b1 +R1 − r13), δ2(R+ b2 −R2 + r24),
δ2(b1 −R′1 − r′13), δ2(−b2 +R′2 + r′24),
δ2(−b1 +R′1 − r′13), δ2(b2 −R′2 + r′24).

The integrations over the transverse coordinates then give
r13 = r′13 = r24 = r′24 = 0, R′1 = b1, R′2 = b2, R1 = R+b1,
R2 = R + b2. As a result the double hard cross section is
expressed as an integral over the three impact parameters,
R, b1 and b2

σ2 =
∫ 1

0
dx1dx2dw1dw2σp(x1w1)σp(x2w2)∫
d2Rd2b1d2b2F1(x1, R+ b1, 0 | x2, R+ b2, 0)

×F2(w1, b1, 0 | w2, b2, 0). (19)

As in the case of the single parton scattering process,
to keep into account that the integrations on the trans-
verse momenta cannot be extended to infinity, one takes
the relative transverse distances between the interacting
partons to be of order of the dimensions of the two hard
scattering blobs, namely is 1/M1 and 1/M2. The resulting
expression of the double parton scattering cross section is
therefore written as

σ2 =
∫ 1

0
dx1dx2dw1dw2σp(x1w1)σp(x2w2)

×
∫

d2Rd2b1d2b2F1(x1, R+ b1, r13 | x2, R+ b2, r24)

× F2(w1, b1, r13 | w2, b2, r24), (20)

Fig. 4. Graphical representation of (22)

with r213 = 1/M2
1 and r224 = 1/M2

2 .
The expression is further simplified by introducing the

c.m. and relative parton coordinates in transverse space

B1 = (b1 + b2)/2 +R, B2 = (b1 + b2)/2, b = b1 − b2.

The double parton distributions are therefore defined as

Γ1(x1, x2, b;M2
1 ,M

2
2 )

=
∫

d2B1 × F1(x1, R+ b1, r13 | x2, R+ b2, r24),

Γ2(w1, w2, b;M2
1 ,M

2
2 )

=
∫

d2B2 × F2(w1, b1, r13 | w2, b2, r24), (21)

and the double parton scattering cross section assumes a
simpler form

σ2 =
∫
Γ1(x1, x2, b;M2

1 ,M
2
2 )σp(x1w1)σp(x2w2)

× Γ2(w1, w2, b;M2
1 ,M

2
2 )dx1dw1dx2dw2d2b, (22)

with the geometrical interpretation shown in Fig. 4. Notice
that the normalization contains also the multiplicity factor
which counts the number of parton interactions in the
hadronic collision (two in this case).

3 Double parton distributions
in the BFKL regime

3.1 Emission of a jet from a single BFKL chain

In the framework of the hard pomeron model the hard
collision process is associated to the production of a gluon
with sufficiently large transverse momentum k > kmin
and at a given rapidity (in this section only 2-dimensional
transverse vectors will appear, so that we again omit the
subindex ⊥ and one take the metric Euclidean, k2 ≥ 0).
The kinematics of the process is clear from Fig. 5.

For the forward case, p1 = p′1, the emission of a gluon
with momentum k is described by modifying as follows
the BFKL Green function in coordinates space G(r′, r′′)
[8]:

G(r′, r′′) →
∫

d2rG(r′r)V (k)G(r, r′′), (23)
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Fig. 5. Emission of a jet from a BFKL chain

where r’s are relative distances between the gluons and

Vk(r) =
12αs

k2

←
∆ eikr

→
∆, (24)

is the vertex operator describing the emission of the gluon;
the arrows show the direction of the action of the ∆ op-
erators. The two BFKL Green functions in (23) are to
be taken at appropriate energy (rapidity) ranges, corre-
sponding to the rapidity distance of the emitted gluon
from the projectile. This dependence is not written ex-
plicitly to avoid overloading our formulas with arguments
and/or indices.

The first step is to generalize (23) for the non-forward
BFKL chain. In momentum space the emission of a gluon
with momentum k is described by the vertex

V (l1, l2 | l′1, l′2)
=

6αs

k2 (2π)2δ2
(
1
2
(l1 + l2 − l′1 − l′2) − k

)

×(l21l
′
2
2 + l22l

′
1
2 − k2(l1 − l2)2). (25)

So the emission blob in momentum space Zk(q1, q2 | q′1, q′2)
is given by

Zk(q1, q2 | q′1, q′2)

=
6αs

k2

∫ 2∏
i=1

d2li
(2π)2

d2l′i
(2π)2

(2π)2

×δ2
(
1
2
(l1 + l2 − l′1 − l′2) − k

)

×(l21l
′
2
2 + l22l

′
1
2 − k2(l1 − l2)2)

×G(q1, q2 | l1, l2)G(l′1, l′2 | q′1q′2)
×(2π)2δ2(q1 − q2 − l1 + l2)
×(2π)2δ2(l′1 − l′2 − q′1 + q′2). (26)

In coordinates space one writes

(2π)2δ2(q1 − q2 − l1 + l2)G(q1, q2 | l1, l2)

=
∫ 2∏

i=1

d2rid2ziG(r1, r2 | z1, z2)

×e(−iq1r1+iq2r2+il1z1−il2z2), (27)

and

(2π)2δ2(l′1 − l′2 − q′1 + q′2)G(l
′
1, l
′
2 | q′1, q′2)

=
∫ 2∏

i=1

d2r′id
2z′iG(z

′
1, z
′
2 | r′1, r′2)

×e(−il′1z′
1+il′2z′

2+iq′
1r′

1−iq′
2r′

2). (28)

Note that due to the inclusion of the δ function in the
Fourier transforms (25) and (26), the Green functions in
coordinate space are translationally invariant:

G(r1 + a, r2 + a | z1 + a, z2 + a) = G(r1, r2 | z1, z2). (29)
The momenta squared in the emission vertex are substi-
tuted by differential operators applied to the Green func-
tion. The bracket in (24) is written as

∆1∆
′
2 +∆2∆

′
1 + k2(∇1 + ∇2)(∇′1 + ∇′2),

where one uses the notation ∆1 = ∆(z1), ∆′1 = ∆(z′1)
etc. The remaining δ function in (26) is represented as an
integral

(2π)2δ2((l1 + l2 − l′1 − l′2)/2 − k)

=
∫

d2ze−iz((l1+l2−l′1−l′2)/2−k),

in such a way that the integrations over the four transverse
momenta in (24) produce four δ functions in coordinate
space:

δ2(z1 − z/2), δ2(z2 + z/2), δ2(z′1 − z/2),
δ2(z′2 + z/2).

One obtains therefore

Zk(q1, q2 | q′1, q′2)

=
∫ 2∏

i=1

d2rid2r′ie
(−iq1r1+iq2r2+iq′

1r′
1−iq′

2r′
2)d2z

×
[
G(r1, r2 | z1, z2)6αs

k2 eikz

×(∆1∆
′
2 +∆2∆

′
1 + k2(∇1 + ∇2)(∇′1 + ∇′2))

×G(z′1, z′2 | r′1, r′2)
]

z1=z′
1=z/2,z2=z′

2=−z/2

, (30)

and the differential operator which stands between the
two Green functions is precisely the generalization of the
emission operator Vk to the non-forward case. By using
the notation

G
(
r1, r2 | z

2
,−z

2

)
Vk(z)G

(z
2
,−z

2
| r′1, r′2

)

≡
[
G(r1, r2 | z1, z2)6αs

k2 eikz

×(∆1∆
′
2 +∆2∆

′
1 + k2(∇1 + ∇2)(∇′1 + ∇′2))

×G(z′1, z′2 | r′1, r′2)
]

z1=z′
1=z/2,z2=z′

2=−z/2

, (31)
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one may rewrite (28) in the more compact form

Zk(q1, q2 | q′1, q′2)

=
∫ 2∏

i=1

d2rid2r′ie
(−iq1r1+iq2r2+iq′

1r′
1−iq′

2r′
2)d2z

×G
(
r1, r2 | z

2
,−z

2

)
Vk(z)G

(z
2
,−z

2
| r′1, r′2

)
. (32)

One defines Z in coordinates space in the following way:

Zk(r1, r2 | r′1, r′2)

=
∫ 2∏

j=1

d2qi
(2π)2

d2q′j
(2π)2

(2π)2δ(q1 − q2 − q′1 + q′2)

×Zk(q1, q2 | q′1, q′2)e(iq1r1−iq2r2−iq′
1r′

1+iq′
2r′

2). (33)

By expressing the δ function as an integral over the impact
parameters B

(2π)2δ(q1 −q2 −q′1+q′2) =
∫

d2Be−iB(q1−q2−q′
1+q′

2), (34)

and by using (32) and (34) in (33) one can do all integra-
tions with the exception of those on B and z. The result
is

Zk(r1, r2 | r′1, r′2)
=

∫
d2Bd2zG

(
r1 +B, r2 +B | z

2
,−z

2

)
×Vk(z)G

(z
2
,−z

2
| r′1 +B, r′2 +B

)
, (35)

and, as a function of the c.m. and relative coordinates,

Zk(R, r | R′, r′) =
∫

d2Bd2zG(R+B, r | 0, z)
×Vk(z)G(0, z | R′ +B, r′), (36)

showing that Zk is translationally invariant:

Zk(R, r | R′, r′) = Zk(R+B, r | R′ +B, r′)
= Zk(R−R′, r, r′). (37)

Equation (37) is our final expression. It shows how one
should change a BFKL Green function G(R, r | R′, r′) =
G(R − R′, r, r′) to describe the emission of a gluon from
the BFKL chain.

3.2 Single parton distributions

The simplest case to consider in the BFKL formalism is
the inclusive emission of a gluon. The problem has been
extensively studied in the literature [9]. Here we approach
the problem from a somewhat novel point of view, intro-
ducing the single parton densities in coordinates space in
the BFKL framework. The quantities which are factorized
in the BFKL formalism are the “unintegrated gluon densi-
ties” [10], depending explicitly on the transverse momen-
tum of the interacting gluon. The distributions that will

be discussed hereafter are therefore different as compared
to the distributions discussed in the first part of the paper,
since they depend explicitly on the distance in transverse
space between the initial and the final interacting partons.
The latter distributions are therefore obtained only after
integration on this transverse distance, with 1/k as a lower
limit.

Rather than using the known expression for the in-
clusive cross section in terms of forward BFKL Green
functions, one starts form the amplitude, corresponding
to the exchange of any number of pomerons between the
projectile and target, obtained in the approximation of a
large number of colors N and assuming the coupling of
pomerons to the colliding particles as purely perturbative
[11]. The amplitude is written as

A = 2is
∫

d2R

∫
d2r

∫
d2r′ρp(r)ρq(r′)

×
(
1 − e−

1
2 g4Gs(R,r,r′)

)
. (38)

Here ρp(q)(r) are the color densities of the projectile and
of the target (with momenta p and q respectively). The
function Gs(R, r, r′) = G(R, r | 0, r′) is the BFKL Green
function, depending on the Mandelstam invariant s. When
retaining the s-wave only, because of the azimuthal sym-
metry, it takes the form [12]

Gs(R, r, r′) =
1

(2π)4

∫
dν

ν2s−E(ν)

(ν2 + 1/4)2

∫
d2r0

×
(

r

r10r20

)1+2iν (
r′

r′10r
′
20

)1−2iν

, (39)

where

r10 = R+ r/2 − r0, r20 = R− r/2 − r0,

r′10 = r′/2 − r0, r′20 = −r′/2 − r0,

and E(ν) is the BFKL pomeron energy

E(ν) = (3g2/2π2)(Reψ(1/2 + iν) − ψ(1)). (40)

Equation (38) allows us to easily write down the ampli-
tudes for single, double etc. pomeron exchange processes.
The single BFKL pomeron exchange amplitude is written
as

A1 = isg4α2
s

∫
d2R

∫
d2r

∫
d2r′ρp(r)ρq(r′)Gs(R, r, r′),

(41)
where the factor g4 corresponds to the couplings of the
pomeron to the color densities ρ. The inclusive cross sec-
tion for emission of a single gluon therefore has the form

I(k) =
(2π)2d3σ

dyd2k

= g4
∫

d2R

∫
d2r

∫
d2r′ρp(r)ρq(r′)Zk(R, r, r′)

=
∫

d2R

∫
d2r

∫
d2r′g2ρp(r)g2ρq(r′)d2Bd2z
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× Gs1(R+B, r | 0, z)Vk(z)Gs2(0, z | B, r′)
=

∫
d2Rd2R′d2z

∫
d2r

∫
d2r′g2ρp(r)g2ρq(r′)

× Gs1(R, r | 0, z)Vk(z)Gs2(0, z | R′, r′). (42)

The dependence on energy is written explicitly in the
Green functions. The emitted gluon rapidity (relative to
the target) is y = log s2. Then s1 = s/s2 (the scale is
not defined in the theory; as usual one sets it to 1GeV).
The integrated single hard scattering inclusive cross sec-
tion can be written as

σ1 =
∫

dyd2kI(k) =
∫

d2k

∫ 1

0
dxdwδ

(
xw − k2

s

)
I(k),

where one has introduced the scaling variables x = s1/s
and w = s2/s. By comparing the expression above with
the factorization formula (7) (with the densities ρ ex-
pressed via (13)) and associating the hard scattering cross
section with the emission vertex Vk one obtains the expres-
sion for the partonic density of the projectile

Fp(x,R, z) = g2
∫

d2rρp(r)Gs1(R, r, z), (43)

with x = s/s1 and G(R, r, z) = G(R, r | 0, z).
The meaning of the variables is the following: R is the

distance from the center of the projectile and z the dis-
tance between the initial and the final interacting partons.
The size of z is of order of 1/k, as a result of the factor
exp ikz in the hard interaction vertex, and the size of r
is of the order of the dimensions of the projectile. The
perturbative approach is justified when both r and z are
small. The asymptotics of the Green function G for small
relative distances and large energy was obtained in [11].
The resulting expression is a function of the dimensionless
variable ξ = R2/rr′(� 1):

Gs(R, r, r′)r,r′�R � s∆

π5/2(a ln s)3/2 ξ
−1

× ln ξ exp
(

− ln2 ξ

a ln s

)
, (44)

where ∆ is the BFKL intercept

∆ =
12αs

π
ln 2, (45)

and
a =

42αs

π
ζ(3). (46)

With z small and fixed, the partonic density (43) behaves
as

Fp(x,R, z) ∼ (1/x)∆

log3/2(1/x)

1
R2 logR exp

(
− log2R

a log(1/x)

)
,

(47)
and it falls rather slowly (essentially as 1/R2) as a func-
tion of the distance from the center of the projectile (R

Fig. 6. Double parton density in the case of direct coupling of
the BFKL pomerons to the constinuent quarks

represents the distance from the projectile, whose aver-
age dimension r0 = 〈r〉 is much smaller than R). The
effect of the exponential is felt only at relatively large
R ∼ exp(1/x)1/2. A more quantitative estimate of the
density can be made by neglecting the weak dependence
on r in the logarithmic factors in (44) and by making the
substitution r → r0:

Fp(x,R, z) � g2

π5/2

(1/x)∆

(a ln(1/x))3/2

zr0
R2 ln

R2

zr0

× exp
(

− ln2(R2/zr0)
a ln(1/x)

)
. (48)

An analogous expression can be written for the target.

3.3 Two pomerons directly coupled
to the projectile (target) and triple pomeron

The double partonic density enters in the process of pro-
ducing two gluons, which physically corresponds to two
jets. It corresponds to the emission of the two gluons from
two different BFKL chains. Note that two gluons can also
be produced from a single BFKL chain. This process is
however subdominant in energy in the BFKL model, be-
ing damped by a power of s. The general structure of
the amplitude describing the double partonic density in
the BFKL regime is shown in Fig. 6. The coupling of the
two pomerons to the projectile is described by the upper
blob B. One calls the energetic variable of the pomeron
s2 = s/s1, with s the overall c.m. energy squared; for sim-
plicity one takes it to be the same for both legs. The upper
blob B is then integrated on s1.

The asymptotic behavior of B(s1) is described by a
single pomeron exchange, so that

B(s1) ≡ B(y1) = b(y1)e∆y1 , y1 = log s1, (49)

where ∆ is the pomeron intercept and b(y) is some smooth
function tending to a constant at high y1. Each of the
pomeron legs has a similar behavior as a function of its
energy variable s2:

P (s2) ≡ P (y2) = p(y2)e∆y2 , y2 = log s2, (50)
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with p(y2) a smooth function tending to a constant at high
y2. The amplitude of Fig. 6 is given by an integral over y1:∫ Y

0
dy1B(y1)P1(Y − y1)P2(Y − y1)

= e2∆Y

∫ Y

0
dy1e−∆y1b(y1)p1(Y − y1)p2(Y − y1), (51)

where Y = y1 + y2 = log s is the overall rapidity interval.
As one may see, at very large Y values, the integration in
(51) stays limited to the region where y1 is smaller than or
of the order 1/∆ and thus it is independent on Y . One may
therefore take for p1(2) the asymptotic values and rewrite
(51) as

e2∆Y pas1 p
as
2

∫ ∞
0

e−∆y1b(y1)dy1, (52)

which corresponds precisely to the behavior of a two
pomeron exchange process.

The rapidities that dominate the integral (52) are of
order 1/∆. The actual value ∆ is, however, not well de-
fined, since it is given by the coupling, whose value is a
parameter in the BFKL approach. Rather than trying to
determine which are the rapidities relevant to B, we pro-
ceed by discussing two limiting cases, which admit pertur-
bative treatment.

Let the projectile be a virtual photon (or a heavy me-
son, “onium”) characterized by a large virtuality Q2 (large
onium mass). Then a limiting configuration is reached
whenQ2 is of the same order as (or larger than) s1, namely

logQ2 ∼ (or >)1/∆ � Y. (53)

The blob B enters then in the DGLAP regime (finite scal-
ing variable x1) where only the large logarithms log(Q2/Λ)
are to be considered. In the fixed coupling approach of
BFKL these logarithms are neglected altogether. Within
the present scale invariant model one does not need there-
fore to sum any logarithms and one may stay within the
pure perturbative approach. The upper blob is then sim-
ply reduced to the qq̄ pair, into which the photon (onium)
has decayed and to which the pomerons are coupled di-
rectly. This is precisely the approximation which leads to
the amplitude (36) obtained in [11] and which was used
in the previous subsection.

On the other hand, at lower virtualities, such as

1 � logQ2 � 1/∆, (54)

the structure of the blob B becomes important. Another
limiting configuration is reached when B enters in the
BFKL regime, namely it is itself described by a pomeron,
which eventually has to split into the two lower pomerons
and the whole amplitude is described by a triple pomeron
interaction. One should keep in mind that, in this last
case, the three pomerons are not, however, in an equiv-
alent regime. The two lower ones, as mentioned, may be
taken at their asymptotical regime, ∆y2 � 1. The upper
one, on the contrary, is characterized by much smaller en-
ergies, such that ∆y1 ∼ 1, so that its exact form needs to
be used.

The two limiting possibilities which we consider are
therefore the direct coupling of the pomerons to the con-
stituent quarks and the triple pomeron interaction. We
first discuss the simpler direct coupling case.

3.4 Two pomerons coupled directly
to the projectile (target)

From the general expression of the amplitude (36) the
contribution with two pomerons directly coupled both to
the projectile and target is written as

A2 = −is
g8

2

∫
d2R

∫
d2r

∫
d2r′ρp(r)ρq(r′)G2

s(R, r, r
′).

(55)
The integrated inclusive cross section is obtained by di-
viding the amplitude by s and by taking the imaginary
part with a minus sign:

σ2 = g8
∫

d2R

∫
d2r

∫
d2r′ρp(r)ρq(r′)G2

s(R, r, r
′). (56)

To obtain the double differential inclusive cross section,
corresponding to the emission of two hard gluons with
momenta k1 and k2 from the two pomerons, we have to
substitute the pomeronic Green function with the emis-
sion functions Zk1 and Zk2 . One obtains therefore

I(k1, k2) =
(2π)2d3

dy1d2k1

(2π)2d3

dy2d2k2
σ

g8
∫

d2R

∫
d2r

∫
d2r′ρp(r)ρq(r′)

×Zk1(R, r, r
′)Zk2(R, r, r

′). (57)

Explicitly, in terms of pomeron Green functions and emis-
sion vertices, one has

I(k1, k2) =
∫

d2R

∫
d2r

∫
d2r′ρp(r)ρq(r′)

×
∫

d2R1d2R2d2z1d2z2

Gs1(R+R1, r | 0, z1)Vk1(z1)
×Gs/s1(0, z1 | R1, r

′)
×Gs2(R+R2, r | 0, z2)Vk2(z2)
×Gs/s2(0, z2 | R2, r

′). (58)

By comparing this expression with the standard form of
the double hard scattering cross section one may identify
the double partonic density of the projectile

Fp(x1, R1, z1 | x2, R2, z2) (59)

= g4
∫

d2rρp(r)Gs1(R1, r | 0, z1)Gs2(R2, r | 0, z2),

where log s1(2) = − log x1(2). A similar formula holds for
the target. The density (59) can be further integrated
over 1/2(R1 + R2) to obtain the double parton distribu-
tion depending only on the distance between the partons
Γp(x1, x2, R1 −R2, z1, z2) defined by (21).
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Fig. 7. Double parton density in the triple pomeron case

The expression (59) is a direct generalization of the
single parton density (43) and it can obviously be gener-
alized to the multiple partonic densities generated by the
direct coupling of any number of pomerons to the projec-
tile (target)

F (x1, R1, z1 | · · · | xn, Rn, zn)

= g2n

∫
d2rρp(r)

n∏
i=1

Gsi
(Ri, r | 0, zi)

where log xi = − log si. (60)

In this simple picture the multiple partonic distribu-
tions are factorized under the integral over r, which labels
the different configurations of the qq̄ pair. Interestingly
this is precisely the correlation in transverse space which
has recently been suggested [13] to describe the anoma-
lously small value of the effective cross section measured
by the CDF experiment [3].

An estimate of the many-body parton distribution can
be made, in this case, by using the asymptotics (42) and
by substituting r in all slowly varying (logarithmic) factors
by its (small) average value 〈r〉. One obtains

Fp(x1, R1, z1 | · · ·xn, Rn, zn) � 〈rn〉
〈r〉n

n∏
i=1

Fp(xi, Ri, zi),

(61)
where Fp(x,R, z) is the single parton distribution defined
by (41). Although the multi-parton distributions are just
a product of single ones, they contain the factor 〈rn〉/〈r〉n

which is always greater than unity. The consequence is
a positive correlations between partons, which however
is independent of their position in transverse space. As
an example the factor 〈r2〉/〈r〉2 is equal to 4/π for the
Gaussian distribution ρ(r) and 3/2 for the exponential
one.

3.5 Triple pomeron: generalities

In Fig. 7 we show the amplitude in the case of a triple
pomeron interaction which, in the large number of colors
N limit, has been discussed in [14]. The resulting expres-
sion is written as

ATP(s1) = −is1
g4N

2π3

∫ y1

0
dy

∫
d2r1d2r2d2r3
r213r

2
12r

2
23

×Ψ1(r1, r2; y1 − y)Ψ2(r2, r3; y1 − y)
×r413∇2

1∇2
3Ψ(r1, r3; y). (62)

Here and in the future we use the notations r12 = r1 − r2,
R12 = (r1 + r2)/2 etc. The y′s are the corresponding ra-
pidity intervals. The pomeronic amplitudes Ψ are defined
as follows:

Ψ(r1, r3, y) =
1
2
g2

∫
d2R′13d

2r′13ρ(r
′
13)Gs0(r

′
1, r
′
3 | r1, r3),

(63)
with s0 = ey and similarly for the other two. To obtain
the corresponding double partonic density, one has to sub-
stitute (1) the factor −is1 by 2, and (2) the two pomeron
amplitudes Ψ1 and Ψ2 by the appropriate pomeronic Green
functions with free legs describing the gluons taking part
in the hard interaction. The functions may have different
rapidity intervals, corresponding to the different rapidities
y1 and y2 of the interacting gluons. The amplitude (62) is
then converted to

g6N

8π3

∫ ymin

0
dy

∫
d2R′13d

2r′13ρ(r
′
13)∫

d2r1d2r2d2r3
r213r

2
12r

2
23

×Gs1/s0(r1, r2 | z1, z3)Gs2/s0(r2, r3 | z2, z4)
×r413∇2

1∇2
3Gs0(r

′
1r
′
3 | r1, r3), (64)

where y = log s0, ymin = min{y1, y2}.
Before moving further, one has to eliminate the differ-

ential operator acting on the last Green function, which
makes the incoming pomeron asymmetric with respect to
the two outgoing ones in the triple vertex. To this end it
is sufficient to note that the differential operator is pro-
portional to the Casimir operator of the conformal group

r413∇2
1∇2

2 = 16C2.

Acting on the function
(

r13
r10r30

)1+2iν

which appears in G(r′1, r
′
3 | r1, r3) it gives a factor 16(ν2+

1/4)2. The action of the operator on G is therefore to
transform it into a Green function which lacks the de-
nominator in (39):

G̃s(R, r, r′) =
1
π4

∫
dνν2s−E(ν)

∫
d2r0

×
(

r

r10r20

)1+2iν (
r′

r′10r
′
20

)1−2iν

. (65)

Note that this function has the same asymptotics as G at
high s, since it is determined by values of ν close to zero.

To obtain the double partonic density one has to finally
take Z13 = Z24 = 0, and to fix the c.m. coordinates of the
initial gluons in both pomeronic legs R12 ≡ R1 and R23 ≡
R2. Note that the triple vertex coordinates ri, i = 1, 2, 3



520 M. Braun, D. Treleani: The double parton distributions in the hard pomeron model

can be expressed via the c.m. coordinates of the initial
gluons

r1 = R12 +R31 −R23, r2 = R12 +R23 −R13,

r3 = R23 +R13 −R12, (66)

so that

r12 = 2(R13 −R23), r23 = 2(R12 −R13),
r31 = 2(R23 −R12). (67)

The jacobian of the transformation from r1, r2, r3 to R12,
R23, R31 is 4. To obtain the density one has to drop the
integrations over R12 and R23. The double parton density
in the triple pomeron interaction case is therefore

F (x1, R1, z1 | x2, R2, z2) =
g6N

128π3

1
(R1 −R2)2

×
∫ ymin

0
dy∫

d2r′ρ(r′)
∫

d2R′d2R

(R−R1)2(R−R2)2

×Gs1/s0(R1, 2(R2 −R), z1)Gs2/s0(R2, 2(R1 −R), z2)

×G̃s0(R
′ −R, r′, 2(R1 −R2)). (68)

One can decouple the space integration involving the up-
per pomeron by shifting the integration variable R′ →
R′ −R. The expression is then written as

F (x1, R1, z1 | x2, R2, z2) =
g6N

128π3

1
(R1 −R2)2

×
∫ ymin

0
dy

∫
d2R′d2r′ρ(r′)G̃s0(R

′, r′, 2(R1 −R2))

×
∫

d2R

(R−R1)2(R−R2)2
Gs1/s0(R1, 2(R2 −R), z1)

×Gs2/s0(R2, 2(R1 −R), z2). (69)

3.6 Triple pomeron: calculation

To evaluate the expression (69) one needs to make some
simplifications: We use the asymptotic expressions for the
two lower pomerons and we keep explicitly into account
that the two relative distances z1,2 are much smaller as
compared to the other distance in (69), as a consequence
of the large transverse momentum of the produced jets. A
further simplification is that the upper pomeron, although
not in its asymptotic regime, is taken with zero total gluon
momenta, where the Green function is substantially sim-
pler.

We first discuss the integration on R (third line in
(69)):

I1(y) =
∫

d2R

(R−R1)2(R−R2)2

× Gs1/s0(R1, 2(R2 −R), z1)
× Gs2/s0(R2, 2(R1 −R), z2). (70)

The asymptotics of the two Green functions at large
s1,2/s0 and small z1,2 is easily worked out (see the Ap-
pendix). The resulting expression is the same as in (42)
with an additional factor 1/2 and a different definition of
ξ:

Gs1/s0(R1, 2(R2 −R), z1)z1�1 � e∆ỹ1

2π5/2(aỹ1)3/2 ξ
−1
1 ln ξ1

× exp
(

− ln2 ξ1
aỹ1

)
, (71)

where

ξ1 =
| R−R1 −R2 || R+R1 −R2 |

2 | R−R2 | z1 , ỹ1 = y1 − y.

The same asymptotic expression holds for Gs2/s0 , with
1 ↔ 2.

In the region y1,2 � y � 1 one may neglect the de-
pendence on y in all smoothly varying factors and one
may substitute ỹ1,2 → y1,2 everywhere, with the excep-
tion of the exponent. By shifting the integration variable
R → R−R1 −R2 one finds

I1(y) = e−2∆ye∆(y1+y2) z1z2
π5a3(y1y2)3/2

×
∫

d2R

R2 | R+R1 || R+R2 || R+ 2R1 || R+ 2R2 |

ln ξ1 ln ξ2 exp
(

− ln2 ξ1
ay1

− ln2 ξ2
ay2

)
, (72)

where

ξ1 =
R | R+ 2R1 |
2z1 | R+R1 | , ξ2 = ξ1(1 → 2). (73)

The integral (72) is dominated by the small R region, so
that log(1/R) ∼ y

1/2
1,2 . One then is allowed to put R = 0

in all factors which are finite in the R = 0 limit and (72)
is simplified to

I1(y) = e−2∆ye∆(y1+y2) 1
4π5a3(y1y2)3/2

z1z2
R2

1R
2
2∫

d2R

R2 ln(R/z1) ln(R/z2)

× exp
(

− ln2(R/z1)
ay1

− ln2(R/z2)
ay2

)
. (74)

The integration over R now can be done explicitly (see
Appendix) with the result

I1(y) = e−2∆ye∆(y1+y2)
√
π

4π4

(
1

a(y1 + y2)

)3/2
z1z2
R2

1R
2
2(

1 − 2
a(y1 + y2)

ln2 z1
z2

)

× exp
(

− ln2(z1/z2)
a(y1 + y2)

)
. (75)



M. Braun, D. Treleani: The double parton distributions in the hard pomeron model 521

At large y1 and y2, with y1 = O(y2), the second term is
subdominant and it may be dropped. The expression is
therefore reduced to

I1(y) = e−2∆ye∆(y1+y2)
√
π

4π4

(
1

a(y1 + y2)

)3/2
z1z2
R2

1R
2
2

× exp
(

− ln2(z1/z2)
a(y1 + y2)

)
. (76)

The next step to evaluate (69) is to integrate the for-
ward Green function, appearing in the first line, over its
rapidity variable with the factor arising from I1:

I2 =
∫ ∞

0
dye−2∆yG̃s0,Q13=0(r′, 2(R1 −R2)). (77)

Here it has been explicitly indicated that the Green func-
tion has to be taken at total momentum of the gluons
equal to zero. One then obtains [12]

G̃s(0, r′, r) =
rr′

2π2

∫ ∞
−∞

dνs−E(ν)(r/r′)2iν , (78)

where E(ν) is given by (40). By putting this expression
into (77) and by integrating over y one is left with an
integral over ν

I2 =
rr′

2π2

∫
dν(r/r′)2iν

1
2∆+ E(ν)

, (79)

where r = 2(R1 − R2). The distance r′ is of the order of
the projectile dimension and it is small, so that the ratio
r/r′ for fixed R1 −R2 is a large number. The integral (79)
can be therefore evaluated by taking the residues of the
integrand at the zeros of 2∆ + E(ν) in the upper half-
plane.

The zeros are located at the points ν = ixk, x1 < x2, <
· · · The first three points are (see [15])

x1 = 0.3169, x2 = 1.3718, x3 = 2.3867. (80)

One obtains

I2 =
1

αsN
rr′

∑
k

ck(r/r′)−2xk , (81)

where
c−1
k = ψ′(1/2 − xk) − ψ′(1/2 + xk). (82)

At large values of r/r′ the nearest pole contributes, so that
one finds

I2 � 1
αsN

c1rr
′(r/r′)−2x1 . (83)

The final average, namely the integration on r′ with
the color density of the projectile, gives therefore 〈r1.64〉,
to be compared with 〈r2〉 which is the result obtained for
the double parton density when coupling the two
pomerons directly to the qq̄ pair.

Collecting all the factors the double parton density cor-
responding to the triple pomeron picture is finally written
as

F (x1, R1, z1 | x2, R2, z2)

=
c1

41+x1π7/2α
2
s 〈r1+2x1〉e∆(y1+y2)

(
1

a(y1 + y2)

)3/2

× z1z2
R2

1R
2
2 | R1 −R2 |1+2x1

exp
(

− ln2(z1/z2)
a(y1 + y2)

)
. (84)

Analogously to the case of direct coupling of the pomerons
to the qq̄ pair, the double parton density contains the
factor 1/R2

1R
2
2. However, in the triple pomeron case the

factor 1/ | R1 − R2 |1+2x1 induces an additional strong
positive correlation in transverse space between the two
partons.

4 Conclusions

In the present paper we have evaluated the double parton
distributions, in the case of interactions between very vir-
tual qq̄ pairs in the BFKL regime. After factorizing the
hard interactions, the double parton distributions depend
on the structure of the blob attached to the projectile (or
to the target). Two limiting possibilities have therefore
been considered:
(a) the whole interaction is represented by the exchange
of two BFKL pomerons attached directly to the qq̄ pair;
(b) the process is described by the triple pomeron inter-
action, where the blob is itself represented by a BFKL
pomeron. The two-body correlations in the double distri-
bution are different in the two cases. In the first case the
only correlation in the double parton distribution is in-
duced by the configuration taken by the qq̄ pair in trans-
verse space, namely: at a given qq̄ configuration the re-
sulting many-body parton distribution is just a poisso-
nian. The second case is, on the contrary, characterized
by a strong correlation in transverse space, as the com-
mon source of the two partons is a BFKL ladder rather
than the qq̄ pair. The two possibilities are linked, through
the AGK rules, to the diffractive events and to the events
with rapidity gaps. The relative importance of the two
contributions can therefore be inferred by comparing the
rates of the two processes.
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Appendix A

In this appendix we shall give some technical details con-
cerning the asymptotics (79) and the calculation of the
integral in (72).
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First the asymptotics of Gs(R, r, r′) at small r′. From
(37) one concludes that at s → ∞ small values of ν con-
tribute. So one is lead to study the leading behavior of
the integral over r0 at small ν when r′ → 0. In this limit
the second factor in (37) is singular at r0 = 0. So small
values of r0 give the dominant contribution and one can
take the first factor out of the integral over r0 at r0 = 0.
The integral over r0 then simplifies to

I =
∫

d2r0
(r0 | r′ − r |)1−2iν . (85)

(To keep the integral convergent one should take Imν >
0.) This integral is trivially calculated by going over to the
momentum space: if

r−1+2iν =
∫

d2q

(2π)2
eiqrf(q), (86)

then

I =
∫

d2q

(2π)2
eiqr′

f2(q). (87)

The function f(q) is trivially found by the inverse Fourier
transformation:

f(q) = π21+2iνq−1−2iν Γ (1/2 + iν)
Γ (1/2 − iν)

. (88)

Putting this into (83) and doing the integration we find

I = (iπ/2)r′4iν
1
ν
. (89)

Inserting this expression into the integral over ν together
with all accompanying factors and taking its asymptotics
at s → ∞ one obtains the desired asymptotics (79).

As to the integral which appears in (72), in the variable
β = lnR it reduces to an integral of the Gaussian type∫ +∞

−∞
dβ(β − β1)(β − β2)

× exp
(

− (β − β1)2

ay1
− (β − β2)2

ay2

)
, (90)

which can be done in a straightforward manner, with the
result (73).
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